陳淑英1, 時朝輝2, 林 勇1
(1.復旦大學附屬華山醫院檢驗醫學科,上海 200040 ;2.貴州醫科大學,貴州 貴陽 550004)
摘要:微小RNA(miRNA)是一類長度約為22nt的小分子非編碼單鏈RNA,其功能主要是在轉錄后水平對基因表達進行調節,從而參與眾多生命活動的調控。無核的血小板在止血和凝血過程中起著重要的作用,深入了解miRNA 在血小板生成和活化中的作用,將為血小板相關的血液系統性疾病的治療提供了新的思路。
關鍵詞:血小板;微小RNA;生成;活化
近年來,冠心?。╟oronary heart disease,CHD)、缺血性或出血性腦卒中等血栓相關性疾病已成為我國乃至世界范圍內人口死亡的主要原因之一[1-3]。血小板作為血栓的主要組成成分,在凝血與纖溶過程中起著重要的作用。目前,在臨床上主要是使用抗血小板藥物對血栓性疾病進行治療[4]。而微小RNA(microRNA,miRNA)作為新近發現的一類小分子非編碼RNA,其通過與靶基因3'UTR的特異性結合,參與了血小板的產生和活化等過程。因此,以miRNA為靶點的治療手段將是改善與血小板相關的血栓性疾病治療效果和預后評定的重要研究方向[5-6]?,F將國內外學者對miRNA與血小板的研究進展作一綜述。
miRNA是一種內源性長度約為22 nt的單鏈非編碼小RNA,它廣泛存在于自然界的各種生物體中[7]。miRNA加工成熟于細胞核與細胞質之中,首先由RNA聚合酶Ⅱ(Poly II)在細胞核中轉錄生成原始miRNA,緊接著在RNA內切酶Ⅲ(Drosha)與結合蛋白(DGCR8)共同加工作用下,原始miRNA在細胞核內形成含有大量U/G堿基配對的莖環樣前體miRNA,核輸出蛋白5(Exportin5)識別前體miRNA并將其轉運出細胞核,前體miRNA在細胞質中被內切酶Dicer與反轉錄結合蛋白TRBP復合物剪切成小分子雙鏈RNA,該雙鏈很快被RNA解旋酶松解,形成成熟的miRNA,該成熟單鏈與RNA誘導的沉默復合體(RISC)一起結合到目標基因mRNA的3'非翻譯區(3'UTR),通過誘導靶mRNA的降解或者抑制相關蛋白的翻譯過程,參與調控細胞生長、分化、增殖、凋亡和遷移等生物學過程[8-10]。
血小板是哺乳動物血液中的有形成分之一,是由骨髓巨核細胞經過一系列的增殖、分化和成熟過程而最終從細胞質中裂解脫落下來的有生物活性的小塊胞質[11]。盡管血小板無核,且缺乏基因組DNA,但是血小板卻能夠合成很多的蛋白質。既往研究表明,血小板中含有豐富的內質網和核糖體,15%~32%的蛋白質編碼基因都以mRNA的形式存在于血小板中[12-14]。BRUCHOVA等[15]在真性紅細胞增多癥的研究中首次證實了血小板miRNA的存在。作為mRNA的調節劑,血小板miRNA參與了血小板多種生理、病理活動的調控。而對于血小板中miRNA的來源,已有研究證實血小板內存在pre-miRNA、Dicer酶、TRBP2蛋白質和AGO2蛋白質等成分,它們可以將pre-miRNA直接加工合成一部分成熟的miRNA,另外一部分血小板miRNA直接來源于巨核細胞上成熟的miRNA[16]。NAGALLA等[17]用芯片技術對來自19個健康個體的白細胞耗盡的血小板RNA(leukocyte-depleted platelet RNA,LDP RNA)進行miRNA表達譜的篩選,發現有284種miRNA均在19個樣本上表達,表1左側列出其中15種高表達的血小板miRNA,用熱圖等分析方法對高低不同反應性的血小板miRNA進行表達差異性的分析,篩選出74種差異性表達的miRNA,其中最大差異表達的miRNA有15種。
表1 血小板中15種高表達的miRNA和15種差異性表達的miRNA
15種高表達的血小板miRNA(從高到低排序)差異性表達的miRNA hsa-miR-223hsa-miR-190 hsa-miR-26bhsa-miR-584 hsa-miR-26ahsa-miR-320a hsa-miR-23ahsa-miR-144 hsa-miR-126hsa-miR-320c hsa-miR-21hsa-miR-320d hsa-let-71hsa-miR-376a hsa-miR-22hsa-miR-320b hsa-miR-24hsa-miR-625 hsa-miR-720hsa-miR-136 hsa-miR-16hsa-miR-376c hsa-miR-23bhsa-miR-337-3p hsa-miR-142-3phsa-miR-411 hsa-miR-142-5phsa-miR-34b hsa-miR-191hsa-miR-376a
miRNA主要是在轉錄后水平對造血細胞生成和分化起著重要的調控作用,包括紅細胞、粒細胞和淋巴細胞等。早在2006年,GARZON等[18]首次通過實驗證實了miRNA參與調控巨核細胞生成和分化,從而影響血小板的生成。此后,越來越多的miRNA被報道能夠調節巨核細胞分化和血小板的生成,GEORGANTAS等[19]檢測出有228種人類miRNA在CD34+造血干細胞上表達,并在人慢性髓原白血病細胞連續細胞株K562細胞中過度表達miR-155,能夠阻滯巨核細胞的分化,從而減少血小板的數量。LU等[20]發現在造血干細胞向巨核細胞系分化的過程中,miR-150表達增加,而在向紅系分化過程中未出現此現象,上調miR-150的表達能夠促使臍帶造血干細胞向巨核細胞系分化,促進血小板的產生。NAVARRO等[21]用佛波酯誘導K562細胞分化為巨核細胞的過程中發現miR-34a表達上調。此外,在K562細胞中過表達的miR-34a可以抑制造血干細胞增殖,促進造血干細胞分化為巨核細胞,從而增加血小板的數量[22]。表2列出了部分miRNA在巨核細胞向血小板生成中的作用,除了表中的這些miRNA,還有很多未知的miRNA在血小板生成過程中是否發揮作用,還有待進一步探究。
對于動脈粥樣硬化斑塊的破裂最常見的是心絞痛和冠心病。一些人在斑塊破裂之后形成了血小板血栓,堵住冠狀動脈就會形成急性心肌梗死,而另一些人修復損傷就不需要形成血小板血栓。個體與個體之間血小板反應性的差異很有可能是導致缺血性血管疾病危險性和臨床結果差異的重要原因。NAGALLA等[17]根據腎上腺素誘導的血小板反應性進行分組,共篩選出有74種miRNA在2組高、低反應性血小板間的表達具有差異性,并選取了其中3種miRNA與其相應的靶基因(miR-200b和PRKAR2B;miR-495和KLHL5、miR-107和CLOCK)相結合,發現這3對均可調節相關蛋白的表達,從而影響血小板的活性。OSMAN等[31]通過對比281種miRNA在血小板靜息和激活狀態下的表達,發現了6種miRNA(miR-15a、miR-339-3p、miR-365、miR-495、miR-98、miR-361-3p)差異性表達,這些研究均表明部分miRNA能夠反映血小板激活或靜息的狀態,有望成為反映血小板功能狀態的潛在靶點。
表2 miRNA在巨核細胞和血小板生成中的作用
注:ETS-1為E26轉錄因子-1(E26 transformation-specific-1);MEIS-1為骨髓嗜病毒整合位點1(myeloid ecotropic viral integration site 1);C-MYB為細胞內禽成髓病毒癌基因同源物(cellular homologue of avian myeloblastosis virus oncogene);TRAF6為腫瘤壞死因子受體相關因子6(tumor necrosis factor receptor-associated factor 6);IL-6為白細胞介素-6(interleukin 6);TNF-α為腫瘤壞死因子α(tumor necrosis factor-alpha);IFN-β為干擾素β(interferon-beta);IL-1β為白細胞介素-1β(interleukin 1 beta);MAPKK1為絲裂原活化蛋白激酶激酶1(mitogen-activated protein kinase kinase);MPL為骨髓增生性白血病病毒致癌基因(myeloproliferative leukemia virus oncogene);RUNX1為runt-相關轉錄因子1(runt-related transcription factor 1);DICER1為核糖核酸酶家族Ⅲ(ribonuclease type Ⅲ);ST18為腫瘤抑制性基因18(suppression of tumorigenicity 18)
miRNA靶點在血小板生成中的作用相關文獻miR-155ETS-1,MEIS-1通過抑制巨核細胞的生成來減少血小板數量[19][23][24]miR-150C-MYB通過促進巨核細胞的生成來增加血小板數量[20][25][26]miR-146aTRAF6,IL-6,TNF-ɑ,IFN-β,IL-1β在巨核細胞核血小板生成過程中起調節作用[27][28][29]miR-34aMAPPK1通過促進造血干細胞形成巨核細胞集落,從而促進巨核細胞核血小板的生成[21][22]miR-28MPL通過抑制巨核細胞的生成來減少血小板數量[30]miR-27a RUNX1聯合Runxl促進巨核細胞生成,增加血小板數量 [31]miR-125b-2 DICER1,ST18對巨核細胞的分化和血小板的生成起調節作用 [32]
有研究證實血小板內miR-223含量的降低主要是通過核因子κB(nuclear factor-kappa B,NF-κB)信號通路來促進血小板增殖和活化,加速血小板血栓的形成,導致了心血管疾病的發生[33]。NAGALLA等[17]研究報道miR-200b通過抑制PRKAR2B基因的表達,從而阻斷環磷酸腺苷依賴的蛋白激酶A(cyclic adenosine monophosphate-protein kinase A,cAMP-PKA)信號通路,導致血小板黏附聚集,形成血小板血栓。此外,調控血小板活化和功能的信號通路還包括PI3K/Akt,肌動蛋白細胞骨架等信號通路[32]。深入探究miRNA調控血小板活化功能的具體信號通路將有助于我們進一步闡明血小板功能及相關疾病的分子機制,為該類疾病的治療提供新思路。
2008年BRUCHOVA等[34]首次證實了與健康個體相比,真性紅細胞增多癥患者多種miRNA異常表達,這表明miRNA可以作為血小板相關疾病的標志物。此外,與血小板反應性相關的疾病中,最近SHI等[33]發現miR-223可以作為高反應性血小板的潛在調節靶物,并且對心血管事件的發生具有強大的預測作用。LUO等[35]通過對比健康個體和不同臨床分期糖尿病患者的血小板來源的miR-103b表達水平,并分析了這些表達水平的變化與其靶基因SFRP4之間的關系,發現了血小板趨化的miR-103b可以負向調控2型糖尿病患者SFRP4 mRNA/蛋白的表達,這意味著miR-103b可以作為2型糖尿病早期診斷的新型標志物。這些研究都進一步說明了多種miRNA可以作為糖尿病、缺血性腦卒中、動脈粥樣硬化、免疫性血小板減少癥等血小板相關疾病的一種潛在標志物。
隨著研究的深入,在大量探究miRNA和血小板之間關系的研究中,發現許多特異性表達的miRNA,并揭示出了miRNA在血小板的生成、血小板的功能以及與血小板相關的血液系統性疾病中都起到了重要的調控作用。因此,對血小板相關miRNA表達和功能的探究將幫助我們進一步了解血小板相關疾病的發病機制。然而目前將miRNA用于評估抗血小板治療效果的臨床研究數據還比較匱乏,因此明確血小板相關的基因及其調控機制,通過作用于特異的miRNA靶向干預來預防和治療血小板相關的疾病,將會有更加廣闊的應用前景。我們相信,隨著研究的深入,miRNA有望成為新型的抗血小板藥物的重要組成部分,并根據基因的表達差異,為患者進行個體化的抗血小板治療,從而提高患者生存率,改善患者的生活質量。
參考文獻
[1]WONG MC,ZHANG DE X,WANG HH. Rapid emergence of atherosclerosis in Asia:a systematic review of coronary atherosclerotic heart disease epidemiology and implications for prevention and control strategies[J]. Curr Opin Lipidol,2015,26(4):257-269.
[2]DAI W,LI Y,LV YN,et al. The roles of a novel anti-inflammatory factor,milk fat globuleepidermal growth factor 8,in patients with coronary atherosclerotic heart disease[J]. Atherosclerosis,2014,233(2):661-665.
[3]AVERT Trial Collaboration Group,BERNHARDT J,LANQHORNE P,et al. Efficacy and safety of very early mobilisation within 24 h of stroke onset(AVERT):a randomised controlled trial[J]. Lancet,2015,386(9988):46-55.
[4]MüLLER KA,KARATHANOS A,TAVLAKI E,et al. Combination of high on-treatment platelet aggregation and low deaggregation better predicts long-term cardiovascular events in PCI patients under dual antiplatelet therapy[J]. Platelets,2014,25(6):439-446.
[5]SHI R,ZHOU X,JI WJ,et al. The emerging role of miR-223 in platelet reactivity:implications in antiplatelet therapy[J]. Biomed Res Int,2015,2015:981841.
[6]NAQALLA S,SHAW C,KONG X,et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity[J]. Blood,2011,117(19):5189-5197.
[7]SCHIRLE NT,SHEU-GRUTTADAURIA J,MACRAE IJ. Structural basis for microRNA targeting[J]. Science,2014,346(6209):608-613.
[8]CARRINGTON JC,AMBROS V. Role of microRNAs in plant and animal development[J]. Science,2003,301(5631):336-338.
[9]覃基政,蔣青. microRNA調控血小板生成及功能[J]. 醫學分子生物學雜志,2012,9(2):136-139.
[10]SCHMIEDEL JM,KLEMM SL,ZHENG Y,et al. Gene expression. MicroRNA control of protein expression noise[J]. Science,2015,348(6230):128-132.
[11]SCHWERTZ H,
[12]BROGREN H,KARLSSON L,ANDERSSON M,et al. Platelets synthesize large amounts of active plasminogen activator inhibitor1[J]. Blood,2004,104(13):3943-3948.
[13]SCHWERTZ H,TOLLEY ND,FOULKS JM,et al. Signal-dependent splicing of tissue factor premRNA modulates the thrombogenicity of human platelets[J]. J Exp Med,2006,203(11):2433-2440.
[14]DENIS MM,TOLLEY ND,BUNTING M,et al. Escaping the nuclear confines:signal-dependent premRNA splicing in anucleate platelets[J]. Cell,2005,122(3):379-391.
[15]BRUCHOVA H,MERKEROVA M,PRCHAL JT. Aberrant expression of microRNA in polycythemia vera[J]. Haematologica,2008,93(7):1009-1016.
[16]LANDRY P,PLANTE I,OUELLET DL,et al. Existence of a microRNA pathway in anucleate platelets[J]. Nat Struct Mol Biol,2009,16(9):961-966.
[17]NAGALLA S,SHAW C,KONG X,et al. Platelet microRNA-mRNA coexpression profiles correlate with platelet reactivity[J]. Blood,2011,117(19):5189-5197.
[18]GARZON R,PICHIORRI F,PALUMBO T,et al. MicroRNA fingerprints during human megakaryocytopoiesis[J]. Proc Natl Acad Sci U S A,2006,103(13):5078-5083.
[19]GEORGANTAS RW 3rd,HILDRETH R,MORISOT S,et al. CD34+ hematopoietic stemprogenitor cell microRNA expression and function:a circuit diagram of differentiation control[J]. Proc Natl Acad Sci U S A,2007,104(8):2750-2755.
[20]LU,GUO S,EBERT BL,et al. MicroRNA-mediated control of cell fate in megakaryocyteerythrocyte progenitors[J]. Dev Cell,2008,14(6):843-853.
[21]NAVARRO F,GUTMAN D,MEIRE E,et al. MiR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53[J]. Blood,2009,114(10):2181-2192.
[22]ICHIMURA A,RUIKE Y,TERASAWA K,et al. MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase1 during megakaryocytic differentiation of K562 cells[J]. Mol Pharmacol,2010,77(6):1016-1024.
[23]O'CONNELL RM,RAO DS,CHAUDHURI AA,et al. Sustained expression of microRNA-155 inhematopoietic stem cells causes a myeloproliferative disorder[J]. J Exp Med,2008,205(3):585-594.
[24]ROMANIA P,LULLI V,PELOSI E,et al. MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors[J]. Br J Haematol,2008,143(4):570-580.
[25]EMAMBOKUS N,VEGIOPOULOS A,HARMAN B,et al. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb[J]. EMBO J,2003,22(17):4478-4488.
[26]BARROGA CF,PHAM H,KAUSHANSKY K. Thrombopoietin regulates c-Myb expression by modulating microRNA 150 expression[J]. Exp Hematol,2008,36(12):1585-1592.
[27]LABBAYE C,SPINELLO I,QUARANTA MT,et al. A three-step pathway comprising PLZF/miR-146a/CXCR4 controls megakaryopoiesis[J]. Nat Cell Biol,2008,10(7):788-801.
[28]STARCZYNOWSKI DT,KUCHENBAUER F,ARGIROPOULOS B,et al. Identification of miR-145 and miR-146a as mediators of the 5q-syndrome phenotype[J]. Nat Med,2010,16(1):49-58.
[29]STARCZYNOWSKI DT,KUCHENBAUER F,WEGRZYN J,et al. MicroRNA-146a disrupts hematopoietic differentiation and survival[J]. Exp Hematol,2011,39(2):167-178.
[30]GIRARDOT M,PECQUET C,BOUKOUR S,et al. MiR-28 is a thrombopoietin receptor targeting microRNA detected in a fraction of myeloproliferative neoplasm patient platelets[J]. Blood,2010,116(3):437-445.
[31]OSMAN A,FA··LKER K. Characterization of human platelet microRNA by quantitative PCR coupled with an annotation network for predicted target genes[J]. Platelets,2011,22(6):433-441.
[32]DAHIYA N,SARACHANA T,VU L,et al. Platelet microRNAs:an overview[J]. Transfus Med Rev,2015,29(4):215-219.
[33]SHI R,ZHOU X,JI WJ,et al. The emerging role of miR-223 in platelet reactivity:implications in antiplatelet therapy[J]. Biomed Res Int,2015,2015:981841.
[34]BRUCHOVA H,MERKEROVA M,PRCHAL JT,et al. Aberrant expression of microRNA in polycythemia vera[J]. Haematologica,2008,93(7):1009-1016.
[35]LUO M,LI R,DENG X,et al. Platelet-derived miR-103b as a novel biomarker for the early diagnosis of type 2 diabetes[J]. Acta Diabetol,2015,52(5):943-949.
(本文編輯:范基農)
Research progress of the relationship between microRNA and platelet
CHEN Shuying1,SHI Chaohui2,LIN Yong1.
(1. Department of Clinical Laboratory,Huashan Hospital,Fudan University,Shanghai 200040,China; 2. Guizhou Medical University,Guiyang 550004,Guizhou,China)
Abstract:MicroRNA(miRNA) is 22-nucleotide noncoding single-stranded RNA. Its main function is to regulate gene expression after transcription,so as to participate in regulating biologic activity. Though platelet has no cell nucleus,it plays an important role in hemostasis and coagulation processes. Understanding the role of platelet production and activity deeply will provide new ideas for the treatment of platelet-related blood systemic diseases.
Key words:Platelet;MicroRNAs;Generation;Activation
文章編號:1673-8640(2016)011-0997-05
中圖分類號:R446.1
文獻標志碼:A
DOI:10.3969/j.issn.1673-8640.2016.011.016
作者簡介:陳淑英,女,1989年生,碩士,技士,主要從事神經免疫研究。
收稿日期:(2015-10-16)