精品伊人久久大香线蕉,开心久久婷婷综合中文字幕,杏田冲梨,人妻无码aⅴ不卡中文字幕

打開APP
userphoto
未登錄

開通VIP,暢享免費電子書等14項超值服

開通VIP
「干貨」數據分析的方法,思路

一、內外因素分解法

在數據分析的過程中,會有很多因素影響到我們的指標,那么如何找到這些因素呢?在此向大家推薦內外因素分解法。內外因素分解法是把問題拆成四部分,包括內部因素、外部因素、可控和不可控,然后再一步步解決每一個問題。

舉個例子:

某社交招聘類網站,分為求職者端和企業端。其盈利模式一般是向企業端收費,其中一個收費方式是購買職位的廣告位。業務人員發現, “發布職位” 的數量在過去的 6 月中有緩慢下降的趨勢。對于這類某一數據指標下降的問題,可以怎么分析呢?

根據內外因素分解法,我們可以從四個角度依次去分析可能的影響因素。

內部可控因素:產品近期上線更新、市場投放渠道變化、產品粘性、新老用戶留存問題、核心目標的轉化。

外部可控因素:市場競爭對手近期行為、用戶使用習慣的變化、招聘需求隨時間的變化。

內部不可控因素:產品策略(移動端/PC端)、公司整體戰略、公司客戶群定位(比如只做醫療行業招聘)。

外部不可控因素:互聯網招聘行業趨勢、整體經濟形勢、季節性變化。

有了內外因素分解法,我們就可以較為全面地分析數據指標,避免可能遺失的影響因素并且對癥下藥。

二、DOSS 思路

DOSS 思路是從一個具體問題拆分到整體影響,從單一的解決方案找到一個規模化解決方案的方式。首席增長官需要快速規模化有效的增長解決方案,DOSS 是一個有效的途徑。

三、數據分析的方法

我們以一個電子商務網站為例,用數據分析產品對該網站進行快速地數據采集、清晰和可視化展示,然后給大家分享這幾種常見的數據分析方法。

3.1 數字和趨勢

看數字、看趨勢是最基礎展示數據信息的方式。在數據分析中,我們可以通過直觀的數字或趨勢圖表,迅速了解例如市場的走勢、訂單的數量、業績完成的情況等等,從而直觀的吸收數據信息,有助于決策的準確性和實時性。

對于電子商務網站,流量是非常重要的指標。上圖中,我們將網站的訪問用戶量(UV)和頁面瀏覽量(PV)等指標匯匯聚到統一的數據看板(Dashboard),并且實時更新。這樣的一個數據看板,核心數字和趨勢一目了然,對于首席增長官來說一目了然。

3.2 維度分解

當單一的數字或趨勢過于宏觀時,我們需要通過不同的維度對于數據進行分解,以獲取更加精細的數據洞察。在選擇維度時,需要仔細思考其對于分析結果的影響。

舉個例子,當監測到網站流量異常時,可以通過拆分地區、訪問來源、設備、瀏覽器等等維度,發現問題所在。圖中,當天網站的訪問用戶量顯著高于上周,這是什么原因呢?當我們按照訪問來源對流量進行維度拆分時,不難發現直接訪問來源的訪問量有非常大的提升,這樣就進一步把問題聚焦了。

3.3 用戶分群

針對符合某種特定行為或背景信息的用戶,進行歸類處理,是我們常常講到的用戶分群(segmentation )的手段。我們也可以通過提煉某一群用戶的特定信息,創建該群體用戶的畫像。例如訪問購物網站、寄送地址在北京的用戶,可以被歸類為“北京”用戶群體。而針對“北京”用戶群體,我們可以進一步觀察他們購買產品的頻度、類別、時間,這樣我們就創建出該用戶群體的畫像。

在數據分析中,我們往往針對特定行為、特定背景的用戶進行有針對性的用戶運營和產品優化,效果會更加明顯。上圖中,我們通過用戶分群功能將一次促銷活動中支付失敗的用戶挑選出來,然后推送相應的優惠券。這樣精準的營銷推廣,可以大幅度提高用戶支付的意愿和銷售金額。

3.4 轉化漏斗

絕大部分商業變現的流程,都可以歸納為漏斗。漏斗分析是我們最常見的數據分析手段之一,無論是注冊轉化漏斗,還是電商下單的漏斗。通過漏斗分析可以從先到后還原用戶轉化的路徑,分析每一個轉化節點的效率。

其中,我們往往關注三個要點:

第一,從開始到結尾,整體的轉化效率是多少?

第二,每一步的轉化率是多少?

第三,哪一步流失最多,原因在什么地方?流失的用戶符合哪些特征?

上圖中注冊流程分為 3 個步驟,總體轉化率為45.5%;也就是說有 1000 個用戶來到注冊頁面,其中 455 個成功完成了注冊。但是我們不難發現第二步的轉化率是 56.8% ,顯著低于第一步 89.3% 和第三步轉化率 89.7%,可以推測第二步注冊流程存在問題。顯而易見第二步的提升空間是最大的,投入回報比肯定不低;如果要提高注冊轉化率,我們應該優先解決第二步。

3.5 行為軌跡

關注行為軌跡,是為了真實了解用戶行為。數據指標本身往往只是真實情況的抽象,例如,網站分析如果只看訪問用戶量(UV)和頁面訪問量(PV)這類指標,斷然是無法全面理解用戶如何使用你的產品。

通過大數據手段,還原用戶的行為軌跡,有助于增長團隊關注用戶的實際體驗、發現具體問題,根據用戶使用習慣設計產品、投放內容。

上圖中展示了一位用戶在某電商網站上的詳細行為軌跡,從官網到落地頁,再到商品詳情頁,最后又回到官網首頁。網站購買轉化率低,以往的業務數據無法告訴你具體的原因;通過分析上面的用戶行為軌跡,可以發現一些產品和運營的問題(比如是不是商品不匹配等等),從而為決策提供依據。

3.6 留存分析

在人口紅利逐漸消褪的時代,留住一個老用戶的成本要遠遠低于獲取一個新用戶。每一款產品,每一項服務,都應該核心關注用戶的留存,確保做實每一個客戶。我們可以通過數據分析理解留存情況,也可以通過分析用戶行為或行為組與回訪之間的關聯,找到提升留存的方法。

在 LinkedIn,增長團隊通過數據發現,如果新用戶進來后添加 5 個以上的聯系人(上圖紅色線條),那么他/她在 LinkedIn 上留存要遠遠高于那些沒有添加聯系人(上圖綠色和紫色的線條)的留存。這樣,添加聯系人稱為 LinkedIn 留存新用戶的最核心手段之一。

除了需要關注整體用戶的留存情況之外,市場團隊可以關注各個渠道獲取用戶的留存度,或各類內容吸引來的注冊用戶回訪率,產品團隊關注每一個新功能對于用戶的回訪的影響等等,這些都是常見的留存分析場景。

3.7 A/B 測試

A/B 測試用來對比不同產品設計/算法對結果的影響。產品在上線過程中經常會使用 A/B 測試來測試不同產品或者功能設計的效果,市場和運營可以通過 A/B 測試來完成不同渠道、內容、廣告創意的效果評估。

舉個例子,我們設計了兩種不同的產品交互形式,通過比較實驗組(A 組)和對照組(B組)的訪問時長和頁面瀏覽量兩個衡量指標,來評估哪一種交互形式更佳。

要進行 A/B 測試有兩個必備因素:第一,有足夠的時間進行測試;第二,數據量和數據密度較高。因為當產品流量不夠大的時候,做 A/B 測試得到統計結果是很難的。而像這樣大體量的公司,每天可以同時進行上千個 A/B 測試。所以 A/B 測試往往在公司數據規模較大時使用會更加精準,更快得到統計的結果。

3.8.數學建模

當一個商業目標與多種行為、畫像等信息有關聯性時,我們通常會使用數學建模、數據挖掘的手段進行建模,預測該商業結果的產生。

作為一家 SaaS 企業,當我們需要預測判斷客戶的流失時,可以通過用戶的行為數據、公司信息、用戶畫像等數據建立流失模型。利用統計學的方式進行一些組合和權重計算,從而得知用戶滿足哪些行為之后流失的可能性會更高。

我們常常說,不能度量,就無法增長,數據分析對于企業商業價值的提升有著至關重要的作用。當然,僅僅掌握單純的理論還遠遠不夠,實踐出真知。數據分析的方法大家不妨在自己日常工作中,有分析相關項目里嘗試使用,相信可以事半功倍,創造更多商業價值。

文章部分來源于互聯網。

本站僅提供存儲服務,所有內容均由用戶發布,如發現有害或侵權內容,請點擊舉報
打開APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
7000 字深度總結:運營必備的 15 個數據分析方法(論)
數據分析常見指標及影響因素
八大數據分析模型之——漏斗分析模型(三)
數據分析師必須掌握的6種方法論和8種思路!你知道幾個?
8種常見的大數據分析模型
自問自答:適用新人,數據分析方法匯總
更多類似文章 >>
生活服務
分享 收藏 導長圖 關注 下載文章
綁定賬號成功
后續可登錄賬號暢享VIP特權!
如果VIP功能使用有故障,
可點擊這里聯系客服!

聯系客服

主站蜘蛛池模板: 弥渡县| 凌源市| 灵川县| 巴楚县| 玉林市| 榆中县| 英山县| 谷城县| 山阴县| 什邡市| 朝阳县| 扬中市| 镇原县| 金华市| 岐山县| 公主岭市| 奇台县| 黄山市| 宾川县| 康马县| 彰武县| 红安县| 增城市| 库尔勒市| 霍山县| 杭州市| 秭归县| 札达县| 武清区| 永嘉县| 辽源市| 建瓯市| 珲春市| 根河市| 五莲县| 什邡市| 黄冈市| 齐齐哈尔市| 布拖县| 旬邑县| 定边县|