精品伊人久久大香线蕉,开心久久婷婷综合中文字幕,杏田冲梨,人妻无码aⅴ不卡中文字幕

打開(kāi)APP
userphoto
未登錄

開(kāi)通VIP,暢享免費(fèi)電子書(shū)等14項(xiàng)超值服

開(kāi)通VIP
應(yīng)聘機(jī)器學(xué)習(xí)工程師?這是你需要知道的12個(gè)基礎(chǔ)面試問(wèn)題

選自Medium

作者:JP Tech等

機(jī)器之心編譯

參與:熊貓

畢業(yè)季找工作了?如果想應(yīng)聘機(jī)器學(xué)習(xí)工程師崗位,你可能會(huì)遇到技術(shù)面試,這是面試官掂量你對(duì)技術(shù)的真正理解的時(shí)候,所以還是相當(dāng)重要的。近日,JP Tech 發(fā)表了一篇文章,介紹了他們面試新人時(shí)可能會(huì)提出的 12 個(gè)面試問(wèn)題。問(wèn)題很基礎(chǔ),但卻值得一看。

這些問(wèn)題是我在面試 AI 工程師崗位時(shí)常問(wèn)到的問(wèn)題。事實(shí)上,并非所有面試都需要用到所有這些問(wèn)題,因?yàn)檫@取決于面試者的經(jīng)驗(yàn)以及之前做過(guò)的項(xiàng)目。經(jīng)過(guò)很多面試(尤其是與學(xué)生的面試)之后,我收集了 12 個(gè)深度學(xué)習(xí)領(lǐng)域的面試問(wèn)題。我將在本文中將其分享給你。
問(wèn)題1:闡述批歸一化的意義 這是一個(gè)非常好的問(wèn)題,因?yàn)檫@涵蓋了面試者在操作神經(jīng)網(wǎng)絡(luò)模型時(shí)所需知道的大部分知識(shí)。你的回答方式可以不同,但都需要說(shuō)明以下主要思想:
算法 1:批歸一化變換,在一個(gè) mini-batch 上應(yīng)用于激活 x。 批歸一化是一種用于訓(xùn)練神經(jīng)網(wǎng)絡(luò)模型的有效方法。這種方法的目標(biāo)是對(duì)特征進(jìn)行歸一化處理(使每層網(wǎng)絡(luò)的輸出都經(jīng)過(guò)激活),得到標(biāo)準(zhǔn)差為 1 的零均值狀態(tài)。所以其相反的現(xiàn)象是非零均值。這將如何影響模型的訓(xùn)練: 首先,這可以被理解成非零均值是數(shù)據(jù)不圍繞 0 值分布的現(xiàn)象,而是數(shù)據(jù)的大多數(shù)值大于 0 或小于 0。結(jié)合高方差問(wèn)題,數(shù)據(jù)會(huì)變得非常大或非常小。在訓(xùn)練層數(shù)很多的神經(jīng)網(wǎng)絡(luò)時(shí),這個(gè)問(wèn)題很常見(jiàn)。如果特征不是分布在穩(wěn)定的區(qū)間(從小到大的值)里,那么就會(huì)對(duì)網(wǎng)絡(luò)的優(yōu)化過(guò)程產(chǎn)生影響。我們都知道,優(yōu)化神經(jīng)網(wǎng)絡(luò)將需要用到導(dǎo)數(shù)計(jì)算。
假設(shè)一個(gè)簡(jiǎn)單的層計(jì)算公式 y = (Wx + b),y 在 W 上的導(dǎo)數(shù)就是這樣:dy=dWx。因此,x 的值會(huì)直接影響導(dǎo)數(shù)的值(當(dāng)然,神經(jīng)網(wǎng)絡(luò)模型的梯度概念不會(huì)如此之簡(jiǎn)單,但理論上,x 會(huì)影響導(dǎo)數(shù))。因此,如果 x 引入了不穩(wěn)定的變化,則這個(gè)導(dǎo)數(shù)要么過(guò)大,要么就過(guò)小,最終導(dǎo)致學(xué)習(xí)到的模型不穩(wěn)定。而這也意味著當(dāng)使用批歸一化時(shí),我們可以在訓(xùn)練中使用更高的學(xué)習(xí)率。


批歸一化可幫助我們避免 x 的值在經(jīng)過(guò)非線性激活函數(shù)之后陷入飽和的現(xiàn)象。也就是說(shuō),批歸一化能夠確保激活都不會(huì)過(guò)高或過(guò)低。這有助于權(quán)重學(xué)習(xí)——如果不使用這一方案,某些權(quán)重可能永遠(yuǎn)不會(huì)學(xué)習(xí)。這還能幫助我們降低對(duì)參數(shù)的初始值的依賴。
批歸一化也可用作正則化(regularization)的一種形式,有助于實(shí)現(xiàn)過(guò)擬合的最小化。使用批歸一化時(shí),我們無(wú)需再使用過(guò)多的 dropout;這是很有助益的,因?yàn)槲覀儫o(wú)需擔(dān)心再執(zhí)行 dropout 時(shí)丟失太多信息。但是,仍然建議組合使用這兩種技術(shù)。
問(wèn)題2:闡述偏置和方差的概念以及它們之間的權(quán)衡關(guān)系 偏置(bias)是什么?這很好理解,偏置是當(dāng)前模型的平均預(yù)測(cè)結(jié)果與我們需要預(yù)測(cè)的實(shí)際結(jié)果之間的差異。當(dāng)模型的偏置較高時(shí),說(shuō)明其不夠關(guān)注訓(xùn)練數(shù)據(jù)。這會(huì)使得模型過(guò)于簡(jiǎn)單,無(wú)法在訓(xùn)練和測(cè)試上同時(shí)實(shí)現(xiàn)優(yōu)良的準(zhǔn)確度。這個(gè)現(xiàn)象也被稱為「欠擬合」。 方差(variance)可以簡(jiǎn)單理解為是模型輸出在一個(gè)數(shù)據(jù)點(diǎn)上的分布(或聚類)。方差越大,模型越有可能更密切關(guān)注訓(xùn)練數(shù)據(jù),而無(wú)法提供在從未見(jiàn)過(guò)的數(shù)據(jù)上的泛化能力。由此造成的結(jié)果是,模型可在訓(xùn)練數(shù)據(jù)集上取得非常好的結(jié)果,但在測(cè)試數(shù)據(jù)集上的表現(xiàn)卻非常差。這個(gè)現(xiàn)象被稱為過(guò)擬合。 這兩個(gè)概念的關(guān)系可通過(guò)下圖說(shuō)明:


上圖中,圓圈中心是能夠完美預(yù)測(cè)精準(zhǔn)值的模型。事實(shí)上,你永遠(yuǎn)無(wú)法找到這樣好的模型。隨著我們離圓圈中心越來(lái)越遠(yuǎn),模型的預(yù)測(cè)也越來(lái)越差。 我們可以改變模型,使得我們可以增大模型猜測(cè)的數(shù)量,使其盡可能多地落在圓圈中心。偏置和方差之間需要保持平衡。如果我們的模型過(guò)于簡(jiǎn)單,有非常少的參數(shù),那么它就可能有較高的偏置和較低的方差。 另一方面,如果我們的模型有大量參數(shù),則其將有較高的方差和較低的偏置。這是我們?cè)谠O(shè)計(jì)算法時(shí)計(jì)算模型復(fù)雜度的基礎(chǔ)。

問(wèn)題3:假設(shè)深度學(xué)習(xí)模型已經(jīng)找到了 1000 萬(wàn)個(gè)人臉向量,如何通過(guò)查詢以最快速度找到一張新人臉? 這個(gè)問(wèn)題涉及到深度學(xué)習(xí)算法的實(shí)際應(yīng)用,關(guān)鍵點(diǎn)在于索引數(shù)據(jù)的方法。這是將 One Shot Learning 應(yīng)用于人臉識(shí)別的最后一步,但這也是最重要的步驟,讓該應(yīng)用易于實(shí)際部署。 基本上來(lái)說(shuō),對(duì)于這個(gè)問(wèn)題,你首先應(yīng)該通過(guò) One Shot Learning 給出人臉識(shí)別方法的整體概況。這可以簡(jiǎn)單地理解成將每張臉轉(zhuǎn)換成一個(gè)向量,然后識(shí)別新的人臉是尋找最接近(最相似)于輸入人臉的向量。通常來(lái)說(shuō),人們會(huì)使用有三元組損失(triplet loss)的定制損失函數(shù)的深度學(xué)習(xí)模型來(lái)完成這一任務(wù)。


但是,如果有文章開(kāi)頭那樣的圖像數(shù)量增長(zhǎng),那么在每次識(shí)別中都計(jì)算與 1000 萬(wàn)個(gè)向量的距離可不是個(gè)聰明的解決方案,這會(huì)使得系統(tǒng)的速度非常慢。我們需要思考在真實(shí)向量空間上索引數(shù)據(jù)的方法,以便讓查詢更加便捷。 這些方法的主要思想是將數(shù)據(jù)劃分成簡(jiǎn)單的結(jié)構(gòu),以便查詢新數(shù)據(jù)(可能類似于樹(shù)結(jié)構(gòu))。當(dāng)有新數(shù)據(jù)時(shí),在樹(shù)中查詢有助于快速找到距離最近的向量。

有一些可以用于這一目的的方法,比如局部敏感哈希(LSH)、Approximate Nearest Neighbors Oh Yeah——Annoy Indexing、Faiss等。 問(wèn)題4:對(duì)于分類問(wèn)題,準(zhǔn)確度指數(shù)完全可靠嗎?你通常使用哪些指標(biāo)來(lái)評(píng)估你的模型? 針對(duì)分類問(wèn)題的評(píng)估方法有很多。準(zhǔn)確度是一種很簡(jiǎn)單的指標(biāo),也就是用正確的預(yù)測(cè)數(shù)據(jù)除以總的數(shù)據(jù)。這聽(tīng)起來(lái)很合理,但現(xiàn)實(shí)情況是,這種度量方式對(duì)不平衡的數(shù)據(jù)問(wèn)題來(lái)說(shuō)并不夠顯著。假設(shè)我們正在構(gòu)建用于預(yù)測(cè)網(wǎng)絡(luò)攻擊的預(yù)測(cè)模型(假設(shè)攻擊請(qǐng)求大約占請(qǐng)求總數(shù)的 1/100000)。 如果該模型預(yù)測(cè)所有請(qǐng)求都是正常的,那么其準(zhǔn)確率也高達(dá) 99.9999%,但在這個(gè)分類模型中,這個(gè)數(shù)字通常是不可靠的。上面的準(zhǔn)確度計(jì)算得到的結(jié)果通常是被正確預(yù)測(cè)的數(shù)據(jù)的百分比,但沒(méi)有詳細(xì)說(shuō)明每個(gè)類別的分類細(xì)節(jié)。相反,我們可以使用混淆矩陣。基本上來(lái)說(shuō),混淆矩陣展示了數(shù)據(jù)點(diǎn)實(shí)際屬于的類別,以及模型預(yù)測(cè)的類別。其形式如下:


除了表達(dá)真正例和假正例指標(biāo)對(duì)應(yīng)于定義了該分類的每個(gè)閾值的變化之外,我們還有名為受試者工作特征(ROC)的圖表?;?ROC,我們可以知道該模型是否有效。

理想的 ROC 越接近左上角的橙色線(即真正例較高,假正例較低),結(jié)果就越好。

問(wèn)題5:你怎么理解反向傳播?請(qǐng)解釋動(dòng)作(action)的機(jī)制。
這個(gè)問(wèn)題的目標(biāo)是測(cè)試參加面試的人是否理解神經(jīng)網(wǎng)絡(luò)的工作方式。你需要說(shuō)明以下幾點(diǎn): 前向過(guò)程(前向計(jì)算)是幫助模型計(jì)算每層的權(quán)重的過(guò)程,所得到的計(jì)算會(huì)得到一個(gè)結(jié)果 yp。這時(shí)候會(huì)計(jì)算損失函數(shù)的值;損失函數(shù)的這個(gè)值能體現(xiàn)模型的優(yōu)劣程度。如果這個(gè)損失函數(shù)不夠好,我們就需要找到一種能夠降低這個(gè)損失函數(shù)的值的方法。神經(jīng)網(wǎng)絡(luò)的訓(xùn)練目標(biāo)實(shí)際上就是最小化某個(gè)損失函數(shù)。損失函數(shù) L(yp,yt) 表示 yp 模型的輸出值與 yt 數(shù)據(jù)標(biāo)簽的實(shí)際值之間的差異程度。


為了降低損失函數(shù)的值,我們需要使用導(dǎo)數(shù)。反向傳播能幫助我們計(jì)算網(wǎng)絡(luò)每一層的導(dǎo)數(shù)?;诿恳粚由蠈?dǎo)數(shù)的值,優(yōu)化器(Adam、SGD、AdaDelta 等)可通過(guò)梯度下降來(lái)更新網(wǎng)絡(luò)的權(quán)重。
反向傳播會(huì)使用鏈?zhǔn)椒▌t機(jī)制或?qū)?shù)函數(shù),從最后一層到第一層計(jì)算每一層的梯度值。

問(wèn)題6:激活函數(shù)有什么含義?激活函數(shù)的飽和點(diǎn)是什么? 1. 激活函數(shù)的含義 激活函數(shù)的目的是突破神經(jīng)網(wǎng)絡(luò)的線性性質(zhì)。我們可以將這些函數(shù)簡(jiǎn)單理解成是一種過(guò)濾器,作用是決定信息是否可以通過(guò)神經(jīng)元。在神經(jīng)網(wǎng)絡(luò)訓(xùn)練期間,激活函數(shù)在調(diào)整導(dǎo)數(shù)斜率方面具有非常重要的作用。 相比于使用線性函數(shù),使用非線性激活函數(shù)能讓神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)更復(fù)雜的函數(shù)表征;但為了有效地使用它們,我們需要理解這些非線性函數(shù)的性質(zhì)。大多數(shù)激活函數(shù)都是連續(xù)可微的函數(shù)。 這些函數(shù)是連續(xù)函數(shù),也就是說(shuō)如果輸入有較小的可微分的變化(在其定義域中的每個(gè)點(diǎn)上都有導(dǎo)數(shù)),那么輸出也會(huì)有較小的變化。當(dāng)然,如前面提到的那樣,導(dǎo)數(shù)的計(jì)算是非常重要的,而且決定了我們的神經(jīng)元是否可以訓(xùn)練。值得提及的幾種激活函數(shù)有 Sigmoid、Softmax 和 ReLU。 2. 激活函數(shù)的飽和范圍 Tanh、Sigmoid 和 ReLU 函數(shù)等非線性激活全都有飽和區(qū)間。

很容易理解,激活函數(shù)的飽和范圍就是當(dāng)輸入值變化時(shí)輸出值不再變化的區(qū)間。這個(gè)變化區(qū)間存在兩個(gè)問(wèn)題。 第一個(gè)問(wèn)題是在神經(jīng)網(wǎng)絡(luò)的前向方向上,落在激活函數(shù)的飽和范圍內(nèi)的層的值將會(huì)逐漸得到許多同樣的輸出值。這會(huì)導(dǎo)致整個(gè)模型出現(xiàn)同樣的數(shù)據(jù)流。這個(gè)現(xiàn)象被稱為協(xié)方差偏移(covariance shifting)。 第二個(gè)問(wèn)題是在反向方向上,飽和范圍內(nèi)的導(dǎo)數(shù)為零,由此導(dǎo)致網(wǎng)絡(luò)幾乎無(wú)法再學(xué)習(xí)到任何東西。這就是我們?cè)谂鷼w一化問(wèn)題中提到的要將值的范圍設(shè)定為零均值的原因。 問(wèn)題7:模型的超參數(shù)是什么?超參數(shù)與參數(shù)有何不同?
1. 模型參數(shù)是什么?


先稍微回顧一下機(jī)器學(xué)習(xí)的本質(zhì),要做機(jī)器學(xué)習(xí),我們需要有一個(gè)數(shù)據(jù)集。沒(méi)有數(shù)據(jù)我們?cè)趺磳W(xué)習(xí)呢?一旦有了數(shù)據(jù),機(jī)器需要找到數(shù)據(jù)之間的關(guān)聯(lián)。 假設(shè)我們的數(shù)據(jù)是溫度和濕度等天氣信息,我們希望機(jī)器執(zhí)行的任務(wù)是找到這些因素與我們的愛(ài)人是否生氣之間的關(guān)聯(lián)。這聽(tīng)起來(lái)似乎并無(wú)關(guān)聯(lián),但機(jī)器學(xué)習(xí)的待辦事項(xiàng)有時(shí)候確實(shí)很可笑?,F(xiàn)在,我們用變量 y 表示我們的愛(ài)人是否生氣,變量 x_1、x_2、x_3……表示天氣元素。我們用下面的函數(shù) f(x) 表示這些變量之間的關(guān)系:


看到系數(shù) w_1、w_2、w_3 了嗎?這就代表了數(shù)據(jù)和結(jié)果之間的關(guān)系,這就是所謂的模型參數(shù)。因此,我們可以這樣定義「模型參數(shù)」: 模型參數(shù)是模型基于訓(xùn)練數(shù)據(jù)生成的值,有助于展示數(shù)據(jù)中數(shù)據(jù)量之間的關(guān)系。 所以當(dāng)我們說(shuō)要為某問(wèn)題找到最佳的模型時(shí),我們的意思是要基于已有的數(shù)據(jù)集為該問(wèn)題找到最合適的模型參數(shù)。模型參數(shù)有如下特性: 
  • 可用于預(yù)測(cè)新數(shù)據(jù);

  • 能展現(xiàn)我們使用的模型的能力,通常通過(guò)準(zhǔn)確度等指標(biāo)表示;

  • 是直接從訓(xùn)練數(shù)據(jù)集學(xué)習(xí)到的;

  • 不是由人類人工設(shè)置的。

 模型參數(shù)也有不同的形式,比如在神經(jīng)網(wǎng)絡(luò)中是權(quán)重、在支持向量機(jī)中是支持向量、在線性回歸和 logistic 回歸算法中是系數(shù)。 2. 什么是模型超參數(shù)?

可能有人認(rèn)為模型超參數(shù)就是或者像是模型參數(shù),但事實(shí)并非如此。實(shí)際上這兩個(gè)概念是完全不同的。模型參數(shù)是從訓(xùn)練數(shù)據(jù)集建模的,而模型超參數(shù)卻完全不是這樣,其完全位于模型之外而且不依賴于訓(xùn)練數(shù)據(jù)。所以模型超參數(shù)的作用是什么?實(shí)際上它們有以下任務(wù): 
  • 在訓(xùn)練過(guò)程中使用,幫助模型尋找最合適的參數(shù);

  • 通常是在模型設(shè)計(jì)時(shí)由人工選擇的;

  • 可基于幾種啟發(fā)式策略來(lái)定義。

 對(duì)于某個(gè)具體問(wèn)題,我們完全不知道最佳的超參數(shù)模型是怎樣的。因此,實(shí)際上我們需要使用某些技術(shù)(比如網(wǎng)格搜索)來(lái)估計(jì)這些值的最佳范圍(比如, k 最近鄰模型中的 k 系數(shù))。下面是模型超參數(shù)的一些示例: 
  • 訓(xùn)練人工神經(jīng)網(wǎng)絡(luò)時(shí)的學(xué)習(xí)率指數(shù);

  • 訓(xùn)練支持向量機(jī)時(shí)的 C 和 σ 參數(shù);

  • k 最近鄰模型中的 k 系數(shù)。


問(wèn)題8:當(dāng)學(xué)習(xí)率過(guò)高或過(guò)低時(shí)會(huì)怎樣?


當(dāng)模型的學(xué)習(xí)率過(guò)低時(shí),模型的訓(xùn)練速度會(huì)變得非常慢,因?yàn)槠涿看螌?duì)權(quán)重的更新會(huì)變得非常小。模型將需要大量更新才能到達(dá)局部最優(yōu)點(diǎn)。 如果學(xué)習(xí)率過(guò)高,模型很可能無(wú)法收斂,因?yàn)闄?quán)重的更新過(guò)大。在加權(quán)的步驟中,模型有可能無(wú)法實(shí)現(xiàn)局部?jī)?yōu)化,然后使模型難以更新到最優(yōu)點(diǎn)(因?yàn)槊坎礁露继眠^(guò)遠(yuǎn),導(dǎo)致模型在局部最優(yōu)點(diǎn)附近搖擺)。 問(wèn)題9:當(dāng)輸入圖像的尺寸加倍時(shí),CNN 參數(shù)的數(shù)量會(huì)增加多少倍?為什么? 對(duì)于參加面試的人來(lái)說(shuō),這個(gè)問(wèn)題很有誤導(dǎo)性,因?yàn)榇蟛糠秩怂伎歼@個(gè)問(wèn)題的方向都是 CNN 的參數(shù)數(shù)量會(huì)增加多少倍。但是,我們看看 CNN 的架構(gòu):


可以看到,CNN 模型的參數(shù)數(shù)量取決于過(guò)濾器的數(shù)量和大小,而非輸入圖像。因此,將輸入圖像的尺寸加倍不會(huì)改變模型的參數(shù)數(shù)量。 問(wèn)題10:處理數(shù)據(jù)不平衡問(wèn)題的方法有哪些? 這個(gè)問(wèn)題檢驗(yàn)的是面試者是否知道處理有真實(shí)數(shù)據(jù)的問(wèn)題的方法。通常來(lái)說(shuō),實(shí)際數(shù)據(jù)和樣本數(shù)據(jù)(無(wú)需調(diào)整的標(biāo)準(zhǔn)數(shù)據(jù)集)在性質(zhì)和數(shù)據(jù)量上都有很大的不同。使用真實(shí)數(shù)據(jù)集時(shí),數(shù)據(jù)有可能是不平衡的,也就是說(shuō)不同類別的數(shù)據(jù)不平衡。針對(duì)這個(gè)問(wèn)題,我們可以考慮使用以下技術(shù): 為模型的評(píng)估選擇適當(dāng)?shù)闹笜?biāo):當(dāng)使用的數(shù)據(jù)集不平衡時(shí),使用準(zhǔn)確度來(lái)進(jìn)行評(píng)估是很不合適的(前面已經(jīng)提到過(guò)),而應(yīng)該選擇精確度、召回率、F1 分?jǐn)?shù)、AUC 等評(píng)估指標(biāo)。


對(duì)訓(xùn)練數(shù)據(jù)集進(jìn)行重新采樣:除了使用不同的評(píng)估指標(biāo)外,人們還可以通過(guò)某些技術(shù)來(lái)獲得不同的數(shù)據(jù)集?;诓黄胶獾臄?shù)據(jù)集創(chuàng)建平衡的數(shù)據(jù)集的方法有兩種:欠采樣和過(guò)采樣,具體技術(shù)包括重復(fù)、自舉或 SMOTE(合成少數(shù)過(guò)采樣技術(shù))。
集成多個(gè)不同模型:通過(guò)創(chuàng)建更多數(shù)據(jù)來(lái)實(shí)現(xiàn)模型的通用性在實(shí)踐中是不可取的。舉個(gè)例子,假設(shè)你有兩個(gè)類別:一個(gè)有 1000 個(gè)數(shù)據(jù)樣本的罕見(jiàn)類別以及一個(gè)有 10000 個(gè)數(shù)據(jù)樣本的常見(jiàn)類別。我們可以不必努力為罕見(jiàn)類別尋找 9000 個(gè)數(shù)據(jù)樣本來(lái)進(jìn)行模型訓(xùn)練,而是可以采用一種 10 個(gè)模型的訓(xùn)練方案。其中每個(gè)模型都使用 1000 個(gè)罕見(jiàn)數(shù)據(jù)樣本和 1000 個(gè)常見(jiàn)數(shù)據(jù)樣本進(jìn)行訓(xùn)練。然后使用集成技術(shù)得到最佳結(jié)果。

重新設(shè)計(jì)模型——成本函數(shù):在成本函數(shù)中使用懲罰技術(shù)來(lái)嚴(yán)厲懲罰數(shù)據(jù)豐富的類別,以幫助模型自身更好地學(xué)習(xí)罕見(jiàn)類別的數(shù)據(jù)。這能使損失函數(shù)的值更全面地覆蓋所有類別。




問(wèn)題11:在訓(xùn)練深度學(xué)習(xí)模型時(shí),epoch、batch(批)和 iteration(迭代)這些概念都是什么意思? 這些是訓(xùn)練神經(jīng)網(wǎng)絡(luò)時(shí)非常基本的概念,但實(shí)際上很多面試者在區(qū)分這些概念時(shí)常常搞混淆。具體來(lái)說(shuō),你應(yīng)該這樣回答:
  • epoch:代表在整個(gè)數(shù)據(jù)集上的一次迭代(所有一切都包含在訓(xùn)練模型中);

  • batch:是指當(dāng)我們無(wú)法一次性將整個(gè)數(shù)據(jù)集輸入神經(jīng)網(wǎng)絡(luò)時(shí),將數(shù)據(jù)集分割成的一些更小的數(shù)據(jù)集批次;

  • iteration:是指運(yùn)行一個(gè) epoch 所需的 batch 數(shù)。舉個(gè)例子,如果我們的數(shù)據(jù)集包含 10000 張圖像,批大?。╞atch_size)是 200,則一個(gè) epoch 就包含 50 次迭代(10000 除以 200)。





問(wèn)題12:數(shù)據(jù)生成器的概念是什么?使用數(shù)據(jù)生成器需要什么? 生成函數(shù)在編程中也非常重要。數(shù)據(jù)生成函數(shù)可幫助我們?cè)诿總€(gè)訓(xùn)練 batch 中生成能直接擬合模型的數(shù)據(jù)。 
 使用生成函數(shù)在訓(xùn)練大數(shù)據(jù)時(shí)大有助益。因此數(shù)據(jù)集并不是需要全部都載入 RAM,這是浪費(fèi)內(nèi)存;此外,如果數(shù)據(jù)集過(guò)大,還可能導(dǎo)致內(nèi)存溢出,對(duì)輸入數(shù)據(jù)的處理時(shí)間也會(huì)變得更長(zhǎng)。 總結(jié) 上面就是我常在面試過(guò)程中向參加面試的人提出的 12 個(gè)有關(guān)深度學(xué)習(xí)的面試問(wèn)題。但是,根據(jù)每個(gè)面試者的情況不同,提問(wèn)的方式可以也會(huì)各不相同,另外也會(huì)有其它一些根據(jù)面試者的經(jīng)歷而提出的問(wèn)題。 盡管這篇文章只涉及技術(shù)問(wèn)題,但也是與面試相關(guān)的。在我個(gè)人看來(lái),態(tài)度是面試成功的一半。所以除了讓你自己積累知識(shí)和技能之外,一定要用真正、進(jìn)取又謙虛的態(tài)度展現(xiàn)你自己,這樣能讓你在對(duì)話中取得很大的成功。
參考鏈接:
https://medium.com/@itchishikicomm/12-deep-learning-interview-questions-you-should-not-be-missed-part-1-8a61f44cadac
本文為機(jī)器之心編譯,轉(zhuǎn)載請(qǐng)聯(lián)系本公眾號(hào)獲得授權(quán)。
本站僅提供存儲(chǔ)服務(wù),所有內(nèi)容均由用戶發(fā)布,如發(fā)現(xiàn)有害或侵權(quán)內(nèi)容,請(qǐng)點(diǎn)擊舉報(bào)。
打開(kāi)APP,閱讀全文并永久保存 查看更多類似文章
猜你喜歡
類似文章
不容錯(cuò)過(guò)的12個(gè)深度學(xué)習(xí)面試問(wèn)題
深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練有哪些必知技巧?
深度神經(jīng)網(wǎng)絡(luò)訓(xùn)練的必知技巧
機(jī)器學(xué)習(xí)的三個(gè)步驟
零基礎(chǔ)入門深度學(xué)習(xí):感應(yīng)器、線性單元和梯度下降
訓(xùn)練神經(jīng)網(wǎng)絡(luò)的五大算法
更多類似文章 >>
生活服務(wù)
分享 收藏 導(dǎo)長(zhǎng)圖 關(guān)注 下載文章
綁定賬號(hào)成功
后續(xù)可登錄賬號(hào)暢享VIP特權(quán)!
如果VIP功能使用有故障,
可點(diǎn)擊這里聯(lián)系客服!

聯(lián)系客服

主站蜘蛛池模板: 浦东新区| 苍梧县| 淅川县| 闻喜县| 中西区| 四川省| 石首市| 定边县| 赤峰市| 綦江县| 肃南| 溧阳市| 广东省| 若羌县| 东光县| 胶南市| 舞钢市| 武宣县| 曲水县| 比如县| 秭归县| 嘉定区| 明水县| 桐乡市| 乐清市| 永丰县| 长岛县| 鲁山县| 内黄县| 峨山| 杂多县| 商洛市| 广安市| 惠水县| 海口市| 通化市| 辽中县| 江口县| 沙洋县| 蛟河市| 云林县|