數學符號的發明及使用比數字要晚,但其數量卻超過了數字。現在常用的數學符號已超過了200個,其中,每一個符號都有一段有趣的經歷。常用數學符號有哪些?下面是常用數學符號大全及意義,供參考。
1常用數學符號大全
數學符號大全及意義之運算符號
如加號(+),減號(-),乘號(×或·),除號(÷或/),兩個集合的并集(∪),交集(∩),根號(√ ̄),對數(log,lg,ln,lb),比(:),絕對值符號| |,微分(d),積分(∫),閉合曲面(曲線)積分(∮)等。
數學符號大全及意義之關系符號
如“=”是等號,“≈”是近似符號(即約等于),“≠”是不等號,“>”是大于符號,“<”是小于符號,“≥”是大于或等于符號(也可寫作“≮”,即不小于),“≤”是小于或等于符號(也可寫作“≯”,即不大于),“→ ”表示變量變化的趨勢,“∽”是相似符號,“≌”是全等號,“∥”是平行符號,“⊥”是垂直符號,“∝”是正比例符號(表示反比例時可以利用倒數關系),“∈”是屬于符號,“?”是包含于符號,“?”是包含符號,“|”表示“能整除”(例如a|b="" 表示“a能整除b”,而="">”是小于符號,“≥”是大于或等于符號(也可寫作“≮”,即不小于),“≤”是小于或等于符號(也可寫作“≯”,即不大于),“→>
數學符號大全及意義之結合符號
如小括號“()”,中括號“[]”,大括號“{}”,橫線“—”=。
數學符號大全及意義之性質符號
如正號“+”,負號“-”,正負號“ ”(以及與之對應使用的負正號“”)
數學符號大全及意義之省略符號
如三角形(△),直角三角形(Rt△),正弦(sin)(見三角函數),
雙曲正弦函數(sinh),x的函數(f(x)),極限(lim),角(∠),
∵ 因為(一個腳站著的,站不住)
∴ 所以(兩個腳站著的,能站住)(口訣:因為站不住,所以兩個點;因為上面兩個點,所以下面兩個點)
總和,連加:∑,求積,連乘:∏,從n個元素中取出r個元素所有不同的組合數 (n元素的總個數;r參與選擇的元素個數),冪 等。
數學符號大全及意義之排列組合符號
C 組合數
A (或P) 排列數
n 元素的總個數
r 參與選擇的元素個數
! 階乘,如5!=5×4×3×2×1=120,規定0!=1
!! 半階乘(又稱雙階乘),例如7!!=7×5×3×1=105,10!!=10×8×6×4×2=3840
數學符號大全及意義之離散數學符號
全稱量詞
存在量詞
├ 斷定符(公式在L中可證)
╞ 滿足符(公式在E上有效,公式在E上可滿足)
﹁ 命題的“非”運算,如命題的否定為﹁p
∧ 命題的“合取”(“與”)運算
∨ 命題的“析取”(“或”,“可兼或”)運算
→ 命題的“條件”運算
命題的“雙條件”運算的
p<=>q 命題p與q的等價關系
p=>q 命題p與q的蘊涵關系(p是q的充分條件,q是p的必要條件)
A* 公式A的對偶公式,或表示A的數論倒數(此時亦可寫為 )
wff 合式公式
iff 當且僅當
↑ 命題的“與非” 運算(“與非門”)
↓ 命題的“或非”運算(“或非門”)
□ 模態詞“必然”
◇ 模態詞“可能”
空集
∈ 屬于(如'A∈B',即“A屬于B”)
不屬于
P(A) 集合A的冪集
|A| 集合A的點數
R2=R○R [R
=R
○R] 關系R的“復合”
Aleph,阿列夫
包含
(或?) 真包含
另外,還有相應的?,?,?等
∪ 集合的并運算
U(P)表示P的領域
∩ 集合的交運算
-或\ 集合的差運算
〡 限制
集合關于關系R的等價類
A/R 集合A上關于R的商集
[a] 元素a產生的循環群
I環,理想
Z/(n) 模n的同余類集合
r(R) 關系 R的自反閉包
s(R) 關系 R的對稱閉包
CP 命題演繹的定理(CP 規則)
EG 存在推廣規則(存在量詞引入規則)
ES 存在量詞特指規則(存在量詞消去規則)
UG 全稱推廣規則(全稱量詞引入規則)
US 全稱特指規則(全稱量詞消去規則)
R 關系
r 相容關系
R○S 關系 與關系 的復合
domf 函數 的定義域(前域)
ranf 函數 的值域
f:x→y f是x到y的函數
(x,y) x與y的最大公約數,有時為避免混淆,使用gcd(x,y)
[x,y] x與y的最小公倍數,有時為避免混淆,使用lcm(x,y)
aH(Ha) H關于a的左(右)陪集
Ker(f) 同態映射f的核(或稱f同態核)
[1,n] 1到n的整數集合
d(A,B),|AB|,或AB 點A與點B間的距離
d(V) 點V的度數
G=(V,E) 點集為V,邊集為E的圖G
W(G) 圖G的連通分支數
k(G) 圖G的點連通度
Δ(G) 圖G的最大點度
A(G) 圖G的鄰接矩陣
P(G) 圖G的可達矩陣
M(G) 圖G的關聯矩陣
C 復數集
I 虛數集
N 自然數集,非負整數集(包含元素'0')
N*(N+) 正自然數集,正整數集(其中*表示從集合中去掉元素“0”,如R*表示非零實數)
P 素數(質數)集
Q 有理數集
R 實數集
Z 整數集
Set 集范疇
Top 拓撲空間范疇
Ab 交換群范疇
Grp 群范疇
Mon 單元半群范疇
Ring 有單位元的(結合)環范疇
Rng 環范疇
CRng 交換環范疇
R-mod 環R的左模范疇
mod-R 環R的右模范疇
Field 域范疇
Poset 偏序集范疇
2常用數學符號意義匯總
= 等于
≠ 不等于
≈ 約等于
<>
> 大于
// 平行
平行且相等
⊥垂直
≥ 大于或等于
≤ 小于或等于
≡ 恒等于或同余
π 圓周率 約為3.1415926536
e 自然常數 約為 2.7182818285
|x| 絕對值或(復數的)模
∽ 相似
≌ 全等
遠大于
<>
∪ 并集
∩ 交集
包含于
∈ 屬于
⊙ 圓
\ 除,求商值,部分編程語言中理解為整除
α,β,γ,φ… 角度;系數
∞ 無窮大(包括正無窮大+∞與負無窮大-∞)
lnx 以e為底的對數(自然對數)
lgx 以10為底的對數(常用對數)
lbx 以2為底的對數
lim 求極限
floor(x) 或[x],亦可寫為 下取整函數(直譯為“地板函數”),又稱高斯函數
ceil(x) 亦可寫為 上取整函數(直譯為“天花板函數”)
x mod y模,求余數
x-floor(x) 或{x} 表示x的小數部分
dy,df(x) 函數y=f(x)的微分(或線性主部)
∫f(x)dx 不定積分,函數f的全體原函數
=>