教學內(nèi)容:人教版 六年級下冊 數(shù)學廣角 例1
教學目標:
1.理解簡單的鴿巢問題及鴿巢問題的一般形式,引導學生采用操作的方法進行枚舉及假設法探究“鴿巢問題”。
2.體會數(shù)學知識在日常生活中的廣泛應用,培養(yǎng)學生的探究意識。
教學重點:了解簡單的鴿巢問題,理解“總有”和“至少”的含義。
教學難點:運用“鴿巢原理”解決相關的實際問題,理解數(shù)學中的優(yōu)化思想。
教學過程:
一、游戲激趣 導入新課
1.同學們看,老師手中拿的是什么?拿出大王和小王,剩下的牌中共有幾種花色?
2.現(xiàn)在我們一起來玩猜花色的游戲,請5位同學到前面每人隨意抽一張紙牌,抽完后不要讓老師看到。
3.抽后老師大膽猜測:一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同(課件出示)。
4.有些同學一定覺得老師只是湊巧猜對了,我們再抽一次,老師還大膽猜測:一副撲克牌,取出大王和小王,5人每人隨意抽一張,至少有2張牌花色相同。如果老師猜對了,就給老師點掌聲。
5.如果老師再換5名同學來抽牌,我還敢確定的說至少有2張牌的花色相同,這是為什么呢?其實這里面蘊藏著一個有趣的數(shù)學原理--抽屜原理,也叫鴿巢原理或鴿巢問題,這節(jié)課我們就一起來研究這個問題。(板書課題)
(設計意圖:通過這個游戲激發(fā)學生學習本節(jié)課的好奇心,也使學生感受到數(shù)學和生活中的聯(lián)系,知道學習本節(jié)課的重要性。)
二、呈現(xiàn)問題 自主探究
1.小紅在整理自己的學習用品是有這樣的發(fā)現(xiàn)(課件出示:把4支鉛筆放進3個筆筒中,不管怎么放,總有一個筆筒里至少有2支鉛筆。)學生齊讀。
2.在這句話中你有什么不理解的嗎?學生提出不理解的詞語。
(1)不管:隨意,想想怎么放就怎么放。
(2)總有:一定有。
(3)至少:最少,最起碼。
師提問:最少2支指的是幾支呢?具體來說。
2.把整句話翻譯過來再說一遍。
(設計意圖:讓學生充分理解這句話的意思,為接下來的研究做好鋪墊。)
2.你覺得這句話說得對嗎?給同學們1分鐘時間同學生靜靜思考一下。
3.現(xiàn)在同學用擺一擺、畫一畫、寫一寫等方法來驗證這句話,老師出示自己的溫馨提示。(課件出示:溫馨提示:選擇自己喜歡的方式驗證,比如,同桌合作,用紙杯代替筆筒,用鉛筆擺一擺,一人擺,一人記錄。(注意:不考慮順序。)
4.學生匯報驗證的方法:
生1:利用圖片來列舉出幾種放法
教師提問:我們來看這位同學的擺法,憑什么說“總有一個筆筒里至少有2支鉛筆”呢?比2支多也可以嗎?
教師小結:非常好,我們在觀察這幾種擺法,把符合要求的筆筒用彩色筆標出來:所以說不管怎么放總有一支筆筒里至少有2支鉛筆。
生2:利用數(shù)字方法列舉出幾種方法(4,0,0)(3,1,0)(2,1,1)(2,2,0)
我們一起圈出每種分法不少于2的數(shù)字。(表揚生2,方法更簡單一些)
5.同學們像剛才把所有中情況都列舉出來,這種方法就叫做列舉法或枚舉法。(板書)
6.除了這種枚舉法,還有沒有別的方法也能證明這句話是對的。
生:先假設每個筆筒中放1支鉛筆,這樣還剩1支鉛筆,這時無論放到哪個筆筒,哪個筆筒就是2支鉛筆了,所以我認為是對的。
師追問:你為什么要現(xiàn)在每個筆筒里放1支呢?
生:因為一共有4支筆,平均分后每個筆筒只能分到一支。
師追問:那為什么要一開始就去平均分呢?
生:平均分就可以使每個筆筒中的筆盡量少一點,如果這樣都能符合要求,其他中情況都能符合要求了。
(設計意圖:教師的追問讓學生更明確為什么要平均分,平均分的好處是什么。)
7.這位同學的想法真是太與眾不同了,我們?yōu)樗恼疲l聽懂了他的想法,把他的想法在復述一遍。
8.想這位同學的方法就是假設法。(板書:假設法)
9.到現(xiàn)在為止,我們可以得出結論了。
三、提升思維 構建模型
1.剛才我們通過不同的方法驗證了這句話是正確的,現(xiàn)在老師把題目改一改,同學們看看還對不對了,為什么?(課件出示:把5支鉛筆放進4個筆筒里,不管怎么放,總有一個筆筒里至少有2支鉛筆。)生回答并說明理由。
2.課件繼續(xù)出示:(1)把6個蘋果放進5個盤子里呢?(2)把10本書放進9個抽屜中呢?(3)把100只鴿子放進99個籠子中呢?
3.我們?yōu)槭裁炊疾捎昧思僭O法來分析,而不是畫圖用枚舉法呢?(枚舉法雖然直觀,但是有一定的局限性,假設法更具有一般性)
(設計意圖:通過出示更大的數(shù),讓學生感受到用假設法的方便性,實用性,同時引出的優(yōu)化的思想。)
4.在數(shù)學課堂上我們通常采用更便于我們解決的方法來解決問題,這是一種優(yōu)化的思想。(板書:優(yōu)化思想)
5.引出物體數(shù)、鴿巢數(shù)、至少數(shù),學生觀察,你有什么發(fā)現(xiàn)嗎?(當物體數(shù)比鴿巢數(shù)多1時,總有一個鴿巢里至少有2個物體。)
6.回過頭來我們看課前老師猜測的撲克牌的游戲,誰能解釋一下是怎么回事呢?看來并不是老師神奇,而是鴿巢問題神奇啊。
7.同學們今天的發(fā)現(xiàn)是德國數(shù)學家狄利克雷最早提出的:課件介紹有關鴿巢問題的來歷。
四、解決問題 練習鞏固
通過學生的努力,我們一起研究出鴿巢問原理,現(xiàn)在老師出幾道題看同學們是否真的學會了。
1.5只鴿子飛進了3個鴿籠,總有一個鴿籠至少飛進了2只鴿子。為什么?
2.把( )本書放進3個抽屜,不管怎么放,總有一個抽屜至少放進2本書。()中能填幾呢?
(設計意圖:習題2鍛煉學生的逆向思維,同時也為下節(jié)課的學習埋下了伏筆。)
五、課堂總結
這節(jié)課的探究學習中,我們一起經(jīng)歷了與德國數(shù)學家狄利克雷一樣的偉大發(fā)現(xiàn),你有什么收獲呢?
板書設計:
鴿巢問題
枚舉法 假設法
(列舉法) (平均分)
優(yōu)化思想