數學學科的系統性和嚴密性決定了數學知識之間深刻的內在聯系,包括各部分知識的縱向聯系和橫向聯系,要善于從本質上抓住這些聯系,進而通過分類、梳理、綜合,構建數學試卷的框架結構。1.對數學基礎知識的考查,既要全面又要突出重點。對于支撐學科知識體系的重點內容,要占有較大的比例,構成數學試卷的主體.注重學科的內在聯系和知識的綜合性,不刻意追求知識的覆蓋面。從學科的整體高度和思維價值的高度考慮問題,在知識網絡的交匯點處設計試題,使對數學基礎知識的考查達到必要的深度。2.對數學思想方法的考查是對數學知識在更高層次上的抽象和概括的考查,考查時必須要與數學知識相結合,通過對數學知識的考查,反映考生對數學思想方法的掌握程度。3.對數學能力的考查,強調“以能力立意”,就是以數學知識為載體,從問題入手,把握學科的整體意義,用統一的數學觀點組織材料,側重體現對知識的理解和應用,尤其是綜合和靈活的應用,以此來檢測考生將知識遷移到不同情境中去的能力,從而檢測出考生個體理性思維的廣度和深度以及進一步學習的潛能。對能力的考查要全面,強調綜合性、應用性,并要切合考生實際。對推理論證能力和抽象概括能力的考查貫穿于全卷,是考查的重點,強調其科學性、嚴謹性、抽象性;對空間想象能力的考查主要體現在對文字語言、符號語言及圖形語言的互相轉化上;對運算求解能力的考查主要是對算法和推理的考查,考查以代數運算為主;對數據處理能力的考查主要是考查運用概率統計的基本方法和思想解決實際問題的能力。4.對應用意識的考查主要采用解決應用問題的形式。命題時要堅持“貼近生活,背景公平,控制難度”的原則,試題設計要切合中學數學教學的實際和考生的年齡特點,并結合實踐經驗,使數學應用問題的難度符合考生的水平。5.對創新意識的考查是對高層次理性思維的考查.在考試中創設新穎的問題情境,構造有一定深度和廣度的數學問題時,要注重問題的多樣化,體現思維的發散性;精心設計考查數學主體內容、體現數學素質的試題;也要有反映數、形運動變化的試題以及研究型、探索型、開放型等類型的試題。數學科的命題,在考查基礎知識的基礎上,注重對數學思想方法的考查,注重對數學能力的考查,展現數學的科學價值和人文價值,同時兼顧試題的基礎性、綜合性和應用性,重視試題間的層次性,合理調控綜合程度,堅持多角度、多層次的考查,努力實現全面考查綜合數學素養的要求。